Table I. Acid Decomposition of Formylmethylcobalamin

	$t_{1/2}, \min$				
pH	Prepared by oxidation of 2,3-dihydroxy- propylcobalamin	Prepared by hydrolysis of 1,3-dioxa-2-cyclopentyl- methylcobalamin			
5.3	1.1	1.1			
5.8		3.1			
6.2	6.7	6.7			
6.5	12.2	12.1			
6.8	21.9	21.6			

Hydroxyethylcobalamin and hydroxyethylcobinamide are acid sensitive and decompose via cobaltcarbon bond cleavage. The rate law for the decomposition of hydroxyethylcobinamide is d[hydroxyethylcobinamide] = $-k_2$ [H+][hydroxyethylcobinamide] = k_2 [H+][hydroxyethylcobinamide] where k_2 = 0.0047 M^{-1} sec⁻¹.¹¹ We therefore expect formylmethylcobalamin to be extremely acid sensitive and propose the following scheme for its acid decomposition.

$$C_{0}CH_{2}C$$
 $\xrightarrow{O}_{H} \xrightarrow{H^{+}} C_{0}CH_{2}C$ $\xrightarrow{O}_{H} \xrightarrow{O}_{H} \xrightarrow{O}_{H} \xrightarrow{O}_{C_{0}(III)} + H_{2}C$ $\xrightarrow{C}_{H}CHOH$

The heterolytic decomposition of formylmethylcobalamin upon photolysis has recently been cited as evidence against its participation in the enzymic mechanism.³ Since interaction of the enzyme with the cobalamin will clearly modify its chemistry, we feel conclusions drawn about enzymic mechanisms from unrelated photochemical evidence are invalid.

Acknowledgments. The work carried out at Harvard was supported by National Science Foundation (Grant No. GP 33515) and that at Brandeis by the National Institutes of Health (Grant No. GM 12633).

(11) P. Dunne, Ph.D. Thesis, Brandeis University, 1970.

(12) National Institutes of Health Predoctoral Trainee.

Richard B. Silverman¹²

Department of Chemistry, Harvard University Cambridge, Massachusetts 02138

David Dolphin*

Department of Chemistry, The University of British Columbia Vancouver, British Columbia, Canada V6T 1W5

Thomas J. Carty, Elizabeth K. Krodel, Robert H. Abeles* Department of Biochemistry, Brandeis University Waltham, Massachusetts 02139 Received May 20, 1974

Structural Parameters That Control Association Constants between Polyether Host and Alkylammonium Guest Compounds¹

Sir:

Selective association between organic host and guest compounds to form highly structured molecular complexes of ground or transition states is a phenomenon central to nature's enzymatic, regulatory, and transport systems. Systematic study of the structural features of organic molecular complexation in solution not involving proteins largely has been limited to the three cyclodextrins as hosts dissolved mainly in aqueous media. The structures of the guest molecules have been varied widely.² Chiral recognition by design of molecular complexes has demonstrated that a high degree of molecular organization is possible by arranging complementary binding sites and steric barriers in host and guest.³ This paper reports how association constants between *tert*-butylammonium thiocyanate and multiheteromacrocycles in chloroform vary with structural parameters of the host.

Table I reports the association constants for 28 multiheteromacrocycles and two open-chain model compounds as hosts and *tert*-butylammonium thiocyanate as guest in chloroform (eq 1) at 24 and 0° .⁴

$$[host] + [(CH_3)_3 C \overset{+}{\mathbf{N}} H_3 \cdot SC \mathbf{N}^{-}] \xrightarrow{K_{\Lambda}} CHCl_3$$
$$[(CH_3)_3 C \overset{+}{\mathbf{N}} H_3 \cdot host \cdot SC \mathbf{N}^{-}] \quad (1)$$

The interesting correlations between structure and complexing power (Table I) are as follows. (1) Compound 18, whose aryl oxygens are distant (para) from one another, has a K_a whose value is a factor of >3.5 \times 10³ lower than K_{a} of isomer 5, whose any oxygens are ortho. In a complex of 18 and RNH_{3}^{+} , a maximum of three oxygens at a time can be used in binding, whereas in that of 5, all six can be involved in complexation.⁵ (2) Compound 2 (18-crown-6) possesses a binding constant $>10^4$ higher than its conformationally flexible open-chain counterpart, 1, and cyclic binaphthyl compound 29 possesses a constant ~ 10 times that of noncyclic binaphthyl compound, 28. The conformations of the complexed and noncomplexed states of the cycles are more similar than those of the open-chain compounds. The rigid binaphthyl unit in the middle of the chain reduces the differences between the cyclic and the noncyclic host. (3) Substitution by a methylene of an oxygen of 2 as in 3 reduced the constant by a factor of

(3) (a) D. J. Cram and J. M. Cram, *Science*, **183**, 803 (1974); (b) R. C. Helgeson, J. M. Timko, P. Moreau, S. C. Peacock, J. M. Mayer, and D. J. Cram, *J. Amer. Chem. Soc.*, **96**, 0000 (1974).

(4) A 0.14 *M* solution of host in CDCl₃ (0.6 ml) was shaken at 24 or 0° with 1.6 ml of 0.1 *M* (CH₃)₃CNH₃+SCN⁻ in D₂O (scale A), with 0.6 ml of 0.4 *M* salt (scale B), or with 0.3 ml of 1.0 *M* salt (scale C). With 100-MHz pmr spectra, the relative concentrations of guest (CH₃ protons) to host (all protons) in CDCl₃ were measured ($\pm 2\%$). The host in D₂O was $\gtrsim 0.5\%$ of the total used except for 2 (Table I, footnote c). The absolute amounts at equilibrium of salt extractable at 24 and 0° were determined by large scale experiments in the absence of host at initial guest concentrations of scales A, B, and C. Values of *K* were calculated from eq I for each scale in which [BX]_{D₂O} and [BX]_{CDCI3}, were equi-

$$= \frac{[BX]_{D_2O}^2 R}{[BX]_{CDC1_3}(1-R) [[BX]_i - [H]_i R(V_{CDC1_3}/V_{D_2O})]^2}$$
(1)

librium concentrations of salt in the absence of host, R is the ratio of concentrations of guest to host in CDCl₃ at equilibrium, $[BX]_i$ is the initial salt concentration in D₂O, $[H]_i$ is the initial host concentration in CDCl₃, and V_{CDCl_3} and V_{D_2O} are the volumes of CDCl₅ and D₂O. Scales A and B were corrected to scale C by multiplying K values for scales A and B by 1.5 to give K_a values. This factor ($\pm 20\%$) represents an average of the factors by which the K's of several hosts common to scales A and C or B and C differed.

(5) Corey-Pauling-Koltun molecular models.

Κ

⁽¹⁾ This work was supported by a grant from the National Science Foundation, GP33533X, and by the U. S. Public Heaith Service, Research Grant No. GM12640-10 from the Department of Health, Education and Welfare.

^{(2) (}a) D. W. Griffiths and M. L. Bender, Advan. Catal. Relat. Subj., 23, 209 (1973); (b) J. H. Fendler and E. J. Fendler, "Catalysis in Micellar and Macromolecular Systems," Academic Press, New York, N. Y., 1974, Chapter 11.

Table I. Asso	ociation Constants in	Chloroform	between	Hosts and	<i>tert-</i> But	ylammonium	Thiocyanat
---------------	-----------------------	------------	---------	-----------	------------------	------------	------------

0			$K_a(M^{-1})$	
no.	Host structure	No. of atoms in macroring	24°	0°
1 ^a	CH ₃ (OCH ₂ CH ₂) ₅ OCH ₃	0	40	30
	$\left(\begin{bmatrix} -A-O-1 & -\begin{bmatrix} -B-O \end{bmatrix} \right)$			
2^{b}	$A = CH_1CH_2 a = 6, \ b = 0$	18	7.5×10^{5} °	8.9 × 10 ⁵
3 ^{<i>a</i>}	$A = CH_2CH_2, a = 4, B = (CH_3), b = 1$	18	5.0×10^{2}	6.5×10^{2}
4 ^{<i>a</i>, <i>d</i>}	$A = CH_{2}CH_{2}, a = 4, B = m \cdot CH_{2}C_{2}H_{2}CH_{2}, b = 1$	18	1.5×10^{3}	2.0×10^{3}
5^{b}	$A = CH_{2}CH_{2}, a = 5, B = o \cdot C_{6}H_{4}, b = 1$	18	1.4×10^{5}	2.8×10^{5}
6 ^{<i>b</i>}	A = B = $o_{\rm r} C_6 H_4 ({\rm OCH}_2 {\rm CH}_2)_2, \ a = b = 1$	18	1.3×10^{4}	1.5 × 1 0 ⁴
7 ^{6, e}	$A = B = \underbrace{(OCH_2CH_2)_2}_{a = b = 1}, a = b = 1$	18	9.5×10^{4}	2.5×10^{5}
8 ^{e, [}	$A = - a = 1, B = CH_2CH_2, b = 4$	18	1.1×10^{6}	6.6×10^5
9 ^{<i>f</i>}	A = $(A_2 CH_2, b = 4)$	18	4.8×10^4	3.3×10^{4}
10 ^{<i>f</i>}	A = $\alpha = 2, B = CH_2CH_2, b = 2$	18	4.1×10^{3}	4.0×10^{3}
11/	$A = \bigcap_{0 \to \infty} \alpha = 3, b = 0$	18	3.1×10^2	4.0×10^{2}
12 ^{<i>f</i>}	$A = B = \bigcap_{0} \bigcap_{0} CH_2CH_2, \ \alpha = b = 1$	18	8.0×10^{1}	7.0×10^{1}
13 ⁸	$A = \bigcup_{N \to \infty} a = 1, B = CH_2CH_2, b = 4$	18	1.4×10^{6}	3.0×10^{6}
148	$A = B = -CH_2 CH_2, a = b = 1$	18	4.2×10^5	1.2×10^{6}
15 [£]	$\mathbf{A} = \underbrace{\mathbf{O}}_{\mathbf{A}}, a = 3, b = 0$	18	6.6×10^{5}	2.0×10^{6}
16 [¢]	$A = \bigcup_{n \in \mathbb{N}} a = 2, b = 0$	12	2.4×10^{2}	8.0×10^{1}
17^{ε}	$\mathbf{A} = \left[\begin{array}{c} \mathbf{O} \\ \mathbf{O} \end{array} \right], \ \boldsymbol{a} = 4, \ \boldsymbol{b} = 0$	24	2.1×10^2	1.1×10^{2}
18^{h}	$\mathbf{A} = - \left(\mathbf{OCH}_{2}\mathbf{CH}_{2} \right)_{b}, \ a = 1, \ b = 0$	20	<40	<30
19 ^{<i>h</i>, <i>i</i>}	$A = B = - (OCH_2CH_2)_5, \ a = b = 1$	36	5.0×10^{1}	3.0×10^{1}
20 ^{h, l}	$\mathbf{A} = \mathbf{B} = - \left(\mathbf{OCH}_{2}\mathbf{CH}_{2} \right)_{\mathbf{i}}, \ a = b = 1$	30	8.0×10^{1}	4.0×10^{1}
2 1 ^{<i>h</i>, <i>i</i>}	$A = B = - (OCH_2CH_2)_3, \ \alpha = b = 1$	24	<40	<30
	$\begin{bmatrix} CH_2 + CH_2O & OCH_2 + CH_2 \\ O \\ CH_2 \\ CH_2 \end{bmatrix}_n CH_2O & OCH_2 + CH_2 \\ OCH_$			
22 ^{h, i}	n = 3	15	1.6×10^{2}	1.3×10^{2}
23 ^{k, i}	n = 4	18	3.1×10^{2}	3.0×10^{2}
24 ^{<i>i</i>}		23	40	30
	$\begin{bmatrix} CH_{2}^{-}CH_{2}O\\ O\\ CH_{2}^{-}CH_{2}O\\ CH_{2}$			
25 ⁴¹⁷ 26 ⁴¹⁷	n = 3	20	<40	<30
20		23	1.0 × 10	
27	$\begin{bmatrix} CH_2 + CH_2O \\ O \\ CH_2 + CH_2 \end{bmatrix} = \begin{bmatrix} O \\ O \\ CH_2 + CH_2 \end{bmatrix} = \begin{bmatrix} CH_2 + CH_2 \\ O \\ CH_2 + CH_2 \end{bmatrix} = \begin{bmatrix} CH_2 + CH_2 \\ O \\ CH_2 + CH_2 \end{bmatrix}$	22	$5.0 \times 10^{\circ}$	3.0 × 10'

Journal of the American Chemical Society | 96:22 | October 30, 1974

7099

^a Carbon and hydrogen analyses were within 0.30% of theory, mass spectra gave molecular ions, and pmr spectra were as expected. ^b C. J. Pedersen, J. Amer. Chem. Soc., **89**, 2495 (1967). ^c K_a was corrected for distribution of up to 15% of host in water. ^d K. Koga and D. J. Cram, unpublished results. ^e Mixture of stereoisomers. ^f J. M. Timko and D. J. Cram, J. Amer. Chem. Soc., in press. ^e M. Newcomb, G. W. Gokel, and D. J. Cram, *ibid.*, **96**, 6810 (1974). ^h R. C. Helgeson, J. M. Timko, and D. J. Cram, *ibid.*, in press. ⁱ Not corrected for two macrorings per molecule. ⁱ E. P. Kyba, M. G. Siegel, L. R. Sousa, G. D. Y. Sogah, and D. J. Cram, J. Amer. Chem. Soc., **95**, 2691 (1973). ^k E. P. Kyba, K. Koga, L. R. Sousa, M. G. Siegel, and D. J. Cram, *ibid.*, **95**, 2692 (1973).

 1.5×10^3 . Substitution of a 1,3-benzenedimethylyl for a CH₂CH₂OCH₂CH₂ unit of 2 as in 4 reduced the constant by about 500. Apparently the non-hydrogen bonded electron pairs of the alternate oxygens electrostatically stabilize the close⁵ N⁺. The complexes of 3 and 4 in models⁵ appear equally sterically comfortable to that of 2 (see A and B). (4) Successive substitution of *o*-phenylyl for ethylene units of 2 as in 5 and 6

reduced the constants by factors of \sim 5 for the first and by an additional factor of 10 for the second. Substitution of binaphthyl for ethylene units reduced the constant by a factor of $\sim 2 \times 10^3$ for the first (29) and by an additional factor of >8 for the second (30). Successive substitution of 2,5-furandimethylyl for CH₂CH₂OCH₂- CH_2 units of 2 as in 9-11 reduced the constants by factors of 12-16 per unit. These effects probably are due to electron delocalization from oxygen into the aromatic π systems, and to inductive effects of aromatic groups. When two furan units are 180° from one another (12), K_a is ~50 times lower than when they are 120° (10). In the complex of 10, three hydrogen bonds can go to three non-furanyl oxygens, but in that of 12 one must involve a furan oxygen. (5) Substitution of 2,6-pyridinedimethylyl for the CH₂CH₂OCH₂CH₂ units of 2 as in 13-15 (see C) changes K_a slightly. In the complex of 14, one pyridine must be hydrogen bonded. When the macroring is reduced to 12 atoms as in 16, or expanded to 24 as in 17, the K_a values are reduced by

factors of $\sim 10^4$. The organization of three hydrogen bonds and three $\ddot{O}:\cdots N^+$ interactions appears critical to strong binding. (6) Substitution of a rigid [2.2]paracyclophane for an ethylene unit of 2 as in 23, 24, 26, and 27 reduced K_{a} by factors of 10³ to 10⁴. In 24, 26, and 27, the two aryl oxygens are held too far apart to provide an ideal binding arrangement, and, in all cyclophane complexes, the methylene bridges sterically inhibit ideal oxygen arrangements.⁵ That all six oxygens of 23 are not involved in binding is suggested by the fact that 22, which contains only five oxygens per ring, has a constant close to that of 23. In a sense, 19 and 20 serve as models for 24–27⁵ and do possess K_a 's about equal to that of 26. The two phenyls of 19 and 20 are thick enough to prevent all six oxygens to be used in binding as in 2. (7) Introduction of a tetrahydro-2,5-furandimethylyl (as in 8) in place of a CH_2CH_2 - OCH_2CH_2 unit of 2 produced little change in K_{a} . However, substitution of two 1,2-cyclohexyl (as in 7) for two ethylene units of 2 reduced K_a by a factor of about 10. Models of the complexes⁵ suggest tertbutylcyclohexyl steric interactions in many of the stereoisomers of 7.

A temperature lowering of 24° produced a maximum increase in binding constant of 3 (pyridyl systems), and a maximum decrease by a factor of 2 (tetrahydrofuranyl systems). Surprisingly, the temperature change affected open-chain model compound **28** little more than cycle **29**.

Since hosts as poor at complexing as **30** can provide highly structured complexes,³ these data indicate that units of a wide structural variety are available for designing host molecules for many purposes.

> Joseph M. Timko, Roger C. Helgeson, Martin Newcomb George W. Gokel, Donald J. Cram* Contribution No. 3362, Department of Chemistry University of California at Los Angeles Los Angeles, California 90024 Received July 25, 1974